Large Language Models and generative AI tools have transformed the way organisations bring order to the vast amount of online and offline data available. AI can narrow down this data universe to a concise...
Artificial intelligence (AI) offers an incredible amount of opportunity from enhancing productivity to managing information. But, because AI "learns" from the data you give it, it's critical to develop...
In consulting, every opportunity starts with a market trigger, whether it be a change in leadership, a new industry regulation or an unexpected shift in investor sentiment. These trigger events can open...
Nearly 9/10 executives consider investing in AI and data to be a top priority for their company. But 8/10 of those initiatives are likely to end in failure. In this post, we explore the key reasons behind...
See how Nexis+ AI and Nexis ® Data+ help management consultants power faster research, credible insights, and compliant AI innovation. As a management consultant, data is your competitive edge. Whether...
In a recent LinkedIn post, data and technology transformation consultant Tommy Tang writes, “Generative AI has emerged as a potent tool across various domains, from content creation to bolstering decision support systems.” He warns, however, that “The efficacy of generative AI is intrinsically tied to the quality of its training data.” And therein lies the challenge, aptly summarized by the adage, “Garbage in, garbage out.” For that reason alone, it pays to understand how any third-party data you use has been aggregated and enriched before you feed it into your generative AI (GenAI) applications.
As digital transformation and use of GenAI accelerates, the implications of low-quality data can turn the potential of GenAI from promising to perilous in an instant. From misguiding algorithms to yielding impractical results, choosing the wrong third-party data provider can lead to a cascade of unintended consequences.
Each of the above risks underscores the importance of selecting third-party data sources you intend to fuel GenAI. They should undergo robust vetting and ongoing monitoring to safeguard against these potential problems.
The journey from selecting to ingesting data is nuanced, demanding a meticulous understanding of what you need from the data. Navigating it requires you to verify that you source data that offers relevance, volume, and quality that aligns with your objectives for GenAI.
By choosing an experienced data aggregator and provider, you get the volume, variety, and value you need from the third-party data you ingest.
Aligning with a proficient third-party data provider pivots your GenAI towards a trajectory defined by accuracy, relevancy, and insightful data generation. Here, the credibility of a provider becomes paramount, especially one that not only brings to the table a profound depth and breadth in its data sources but also adheres to a rigorous process of crafting semi-structured, enriched data.
The caliber of GenAI is a direct reflection of the quality, volume, and variety of data it is nurtured on. Ensuring that the data you ingest is well-structured, enriched, and insightful paves the way towards unleashing the true potential of GenAI.